

A Selective Hardness, Metals, and Sulphate Removal Plant Using an Innovative Approach to Ion Exchange

Sivan Iswaran

Business Development Manager Clean TeQ Water

CONSTRUYENDO JUNTOS UN PERÚ MEJOR

Mine Water Challenges

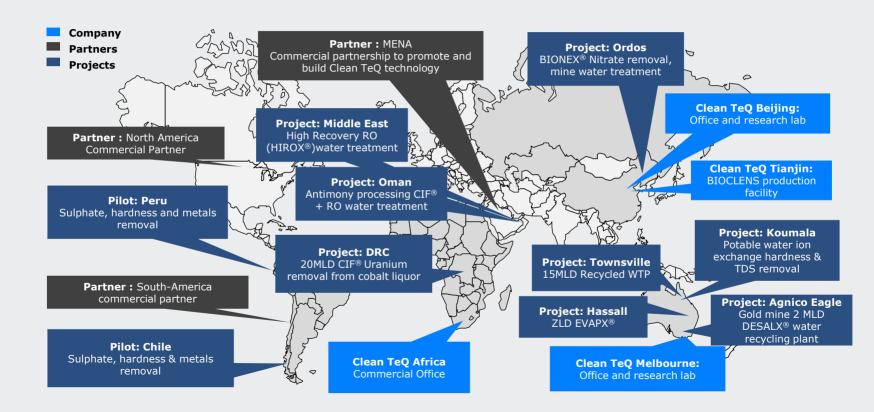
Mine waters have sulphates, iron, manganese, calcium & magnesium

RO accepted as the most bulletproof water treatment technology (a lot of energy and brine)

Evaporation ponds:

- Expensive to install
- Require large surface areas
- Unsightly
- Vulnerable fires & sabotage
- Expensive to decommission and remove

Clean TeQ Water (ASX:CNQ)



Introduction To Clean TeQ Water

Portfolio of Solutions

CIF'

Continuous Ionic Filtration

Moving resin beds in counterflow to water to improve treatment efficiency, reduce chemical use, produce smaller volume brines and filter solids

DESALX®

Membrane Free Desalination

Chemical removal of divalent ions resulting in ultra-high recovery treatment of complex wastewater at low cost and without producing saline brines

HIROX®

Chemical Free Ultra High Recovery RO

CIF® removes hardness to maximize RO recovery and membrane life. RO brine used to regenerate the resins without need for additional chemicals

Direct Graphene Nanofiltration

Removal of colour, turbidity, micropollutants, bacteria, virus and organics, typically with half the energy use of conventional (polymeric) nanofiltration

BIOCLENS®

Lens Encapsulated Bacteria

High activity to reach ultra low ammonia/nitrate concentrations with smaller footprints. Can operate under harsh conditions of high salinity and toxicity

BIONEX™

Complete Nitrate Removal

CIF° to remove nitrate to <1 ppm.
BIOCLENS° to remove nitrate from the brine for reuse, greatly reducing the OPEX.

PHOSPHIX™

Complete Phosphate Removal and Recovery

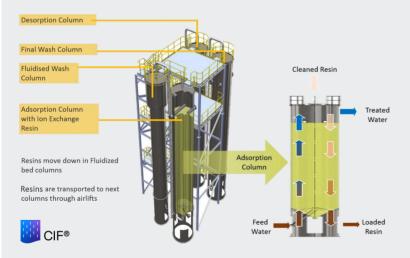
CIF° to remove phosphate to <0.1 ppm. Precipitates a solid, reusable phosphorus product enabling brine reuse, greatly reducing OPEX

EVAPX®

Low Energy Evaporation/ Crystallization

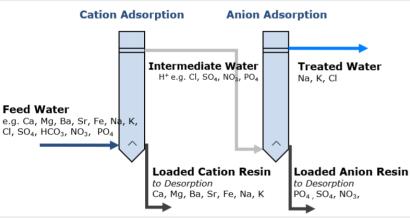
Low temperature ambient pressure evaporation to minimize energy use, reduce scaling/fouling and enable effective use of waste heat

Brief History of Clean TeQ's Resin Technology



- Clean TeQ's base ion exchange technology was for metal recovery was developed by the All Russian Research Institute of Chemical Technology (ARRICT) over a period of 40 years.
- Since then, Clean TeQ has advanced and adapted the technology for water treatment.
- The former head of ARRICT's adsorption department is Clean TeQ's head scientist

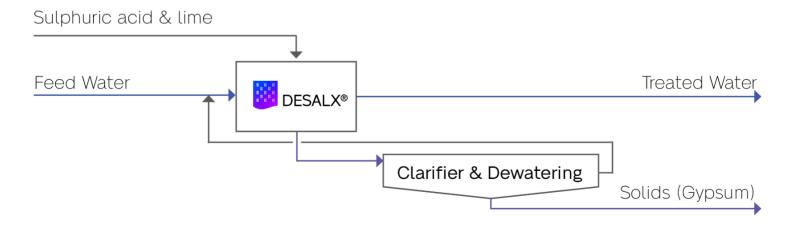
CIF® (Continuous Ionic Filtration)


Features

- ✓ High removal efficiencies (liken to 10x lead-lag batch vessels)
- ✓ Tolerates TSS up to 150 mg/L
- ✓ Fouling Resistant tolerates precipitates forming
- ✓ Lower OPEX chemical consumption in desorption than batch IX
- √ Very high water recovery
- Robust adaptable to variable flow & composition

DESALX® (Membrane Free Desalination)

- Removes multivalent cations and anions
- Perfect where sodium is low in the feed


- Low OPEX lime and sulphuric acid
- Can be paired with HDS systems for ZLD

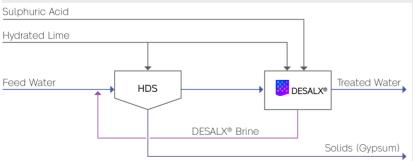
DESALX Technology Spotlight

DESALX® - ZLD Flowsheet. HDS Brine Treatment


Hardness and Sulphate Removal – HDS Brine Treatment

DESALX® - ZLD Flowsheet. HDS Pretreatment

Hardness and Sulphate Removal – HDS Pre-treatment



Pilot: Coal Mine in Chil

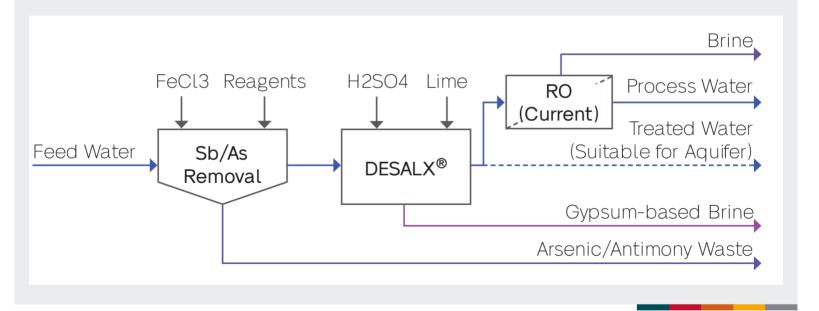
- Produced water from mining pit
- Strict discharge limits
- ZLD solution required
- HDS + DESALX® piloted

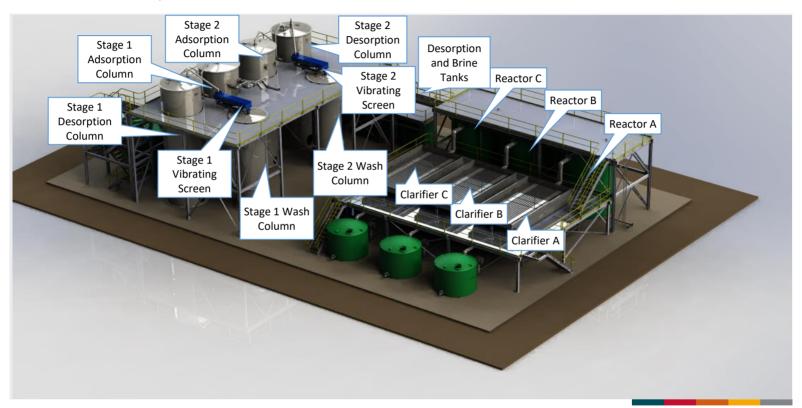
Parameter	Units	Feed Water	DESALX [®] Treated	Gypsum Solids
Flow Rate	m³/h	180.0	178.0	2.0
Recovery	%	-	98.9%	-
Water pH	-	8.5	7.0	7.0
TDS	mg/L	1,003	100	31,220
Calcium	mg/L	64.85	0.06	618.26
Magnesium	mg/L	17.38	0.02	753.95
Sodium	mg/L	197.27	25.71	7,462.18
Sulphate	mg/L	410.33	57.78	22,011
Solids	% w/w	0.00	0.00	3.3%

Case Study – Angnico Eagle Gold Mine

Location	Bendigo, State of Victoria, Australia
Fosterville Gold Mine	Largest Victorian gold producer
Mine Type	Underground, decline access
Production	619,366 ounces (approx. 36.9g/t)
Process	BIOX, CIL, & Gravity Circuit
End Product	Gold doré
Infrastructure	Mill 2,275 tpd capacity
Commenced Operation	2005

Case Study – Angnico Eagle Gold Mine


Problem	Excess water containing arsenic, antimony, hardness & sulphate. Stored in old open cuts that were filling up	
Client's Thinking	UF + RO	
Our Thinking	DESALX®	
Benefits	 ✓ Lower OPEX ✓ Higher recovery ✓ Local company close to site ✓ Reduced potable water make-up 	
Risks	New moving bed ion exchange technology. First water treatment project.	



Angnico Eagle Flowsheet

Plant Performance – Angnico Eagle

		Design Basis			Performance
Species	Unit	Before Precipitation	Before DESALX [®]	After DESALX [®]	After DESALX®
TDS	ppm	7,400	7,400	5,848	5,410
Calcium	ppm	300	300	85	107
Magnesium	ppm	321	321	96	223
Sulphate	ppm	1515	1515	1000	790
Iron	ppm	1	5	0.1	0.05
Total Arsenic	ppm	0.5	0.03	0.03	0.001
Antimony	ppm	13	0.05	0.05	0.025

- Meets performance criteria: SO4, Fe, As, Sb
- Chemical usage is below the design criteria
- Water quality for aquifer reinjection
- 85% Recovery from downstream RO not suffering with scaling or high turbidity

Project Overview - Angnico Eagle

Size	2 MLD Water Treatment
Client	Fosterville Gold Mine Pty Ltd
Date of Award	12 December 2017
Contract Duration	12 December 2017 until 12 weeks after completion of commissioning
Completion	December 2019
Project Value	AUD \$3.5M

What can we do better next time?

- Understanding of resin bed hydraulics at large scale
- Resin screening for resin cleaning/dewatering worked closely with suppliers to optimise design and operation for future projects and implement O&M improvements
- Improvements to As/Sb precipitation sludge management e.g. seeding/recycling to reduce equipment footprint and maintenance
- Buffering capacity between unit operations such as the RO to ensure process does not debottlenecked at higher capacities

Summary

- Mine waters (Acid Mine Drainage) are high in Metals, Hardness, and Sulphate
- Global regulations demand water reuse and better-quality treated water
- DESALX® (and CIF®) ion exchange technologies are ideal high recovery, non-saline brine alternatives for mine water treatment because of their:
 - √ Very high-water recovery
 - ✓ Resistance to scaling and fouling
 - ✓ Selective removal of contaminating species
 - ✓ Synergy with RO or HDS for MLD/ZLD

DESALX® - True ZLD Without Saline Brines

Typical Sources
Mine Wastewater
Oil/Gas Produced Water
Groundwater

Example Influent		
TDS	1200 - 6000 ppm	
SO ₄	800 - 3000 ppm	
Ca	100 - 500 ppm	
Mg	100 - 300 ppm	
Na*	0 - 1000 ppm	
Cl	0 - 350 ppm	

* Na+Mg+Ca mix can reduce this to 250ppm

Typical Uses
Process Water
Irrigation Water
Drinking Water

Example Effluent		
TDS	500 - 1500 ppm	
SO ₄	250 - 500 ppm	
Ca	<10 - 50 ppm	
Mg	<10 - 30 ppm	
Na	0 - 250 ppm	
Cl	0 - 350 ppm	

CONSTRUYENDO JUNTOS UN PERÚ MEJOR

Sivan Iswaran

Business Development Manager

/ +61 488 601 060

siswaran@cleanteqwater.com

Clean TeQ Water Limited

12/21 Howleys Road Notting Hill VIC 3168, Australia

www.cleanteqwater.com

